应我校澳门新京浦官网app邀请,广州大学郑波教授于2021年11月3日为我院教师和研究生讲学。欢迎澳门新京浦官网app及全校相关教师、博士生、硕士生参加!
报告题目:Modeling and analysis of the implementation of the Wolbachia
incompatible and sterile insect technique for mosquito population suppression
报告人:郑波教授
报告人单位:广州大学
时间:2021年11月3日(周三)上午9:30-10:30
腾讯会议:707 719 419
郑波教授简介:广州大学教授,博士生导师。近五年来从事生物数学与泛函微分方程的研究,在《Nature》、《SIAM Journal of Applied Mathematics》、《Journal of Mathematical Biology》、《中国科学》、《Journal of Theoretical Biology》、《Theoretical Population Biology》等国际国内重要刊物上发表论文20余篇。先后主持国家自然科学基金4项、广州市教育局3项,2014年入选广东省高校优秀青年教师培育对象,2019年获得首届秦元勋青年数学奖,是教育部创新团队“泛函微分方程及相关问题”的骨干成员。
报告摘要:The release of Wolbachia-infected mosquitoes in 2016 and 2017 enabled near-elimination of the sole dengue vector Aedes albopictus on Shazai and Dadaosha islands in Guangzhou. Mathematical analysis may offer guidance in designing effective mass release strategies for the area-wide application of this Wolbachia incompatible and sterile insect technique in the future. The two most crucial concerns in designing release strategies are how often and in what amount should Wolbachia-infected mosquitoes be released in order to guarantee population suppression. Motivated by the experimental data from the Guangzhou mosquito factory and the release strategy implemented on two islands, we formulate and analyze a mosquito population suppression model considering the situation for the release period less than the sexual lifespan of Wolbachia-infected males. In this talk, I’d like to introduce how to find the thresholds on the release amount and the release period. Based on these thresholds, the model generates rich dynamics such as, the existence and uniqueness of a globally asymptotically stable periodic solution, the global asymptotical stability of the origin, and the existence of exactly two periodic solutions.
欢迎各位老师同学届时参加!